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THE ANGULAR RESOLUTION OF MULTIPLE TARGETS 

by 

J. R. Sklar 

F. C. Schweppe 

ABSTRACT 

The angular accuracy obtainable from an aperture of fixed size 

is considered, with emphasis on the multiple target case. By means 

of the Cramer-Rao Inequality, a lower bound to the measurement 

variance is computed. In addition, the degradation due to uncer- 

tainties in the number of targets present is considered. Loss of 

accuracy is small until the targets approach to within one beamwidth, 

at which point the degradation becomes severe. 

This technical documentary report is approved for distribution. 

franklin C. Hudson) Deputy Chief 
Air Force Lincoln Laboratory Office 



1. Introduc tion 

Resolution of multiple targets has always been of some concern to the radar 

designer, but the recent interest in discrimination has given a new importance 

to be problem. In a multiple target environment, energy from several reflectors 

impinges on the receiving antenna and as a result, the data processing involves 

both the extraction of salient features of the received signal and the assign- 

ment of these features to their respective targets. Range and range rate 

resolution can be effected by the design of the radar signal in the time dimension 

and angular resolution can be achieved through design in the special dimensions 

(antenna design). However, there is at least an order of magnitude difference 

between the angular and range resolution capabilities of today's more sophis- 

ticated radars. The possibility that this discrepancy is at least partly due 

to a failure to utilize all available angular information in the return signal 

is indicated by the success of the monopulse lobe comparison technique for beam 

splitting when only a single target is present, and its abrupt failure when 

there are more than one in the same range resolution interval. Thus, the ques- 

tion of the existence of a middle ground in which a moderate degree of beam 

splitting in presence of multiple targets is possible arises. 

This report investigates the amount of angular information inherent in a 

received signal by the use of the Cramer-Rao or Information Inequality. Bounds 

on the minimum obtainable angular accuracies are derived for both the one- and 

two-target case. The detection problem of deciding the number of targets present 

is also discussed and limited results given. 

2. Preliminaries 

The following two-dimensional radar model is used.  The three-dimensional 

case is a direct generalization. Several targets, say Q, are reflecting energy 

continuously toward a linear aperture of fixed length, X. The incident plane 
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wave is sampled at an arbitrarily large number of points on the aperture and 

noise is added to the samples. Since the transmission medium is linear, the 

contributions to the sample value from each target can be summed, and therefore 

the samples are a 2 component vector consisting of the quadrature components 

Q 

z,(x) = )  A. sin (q> + <D(x,a.)) + w (x)    0 < x ^X 

j=l 

Q 

(x) =^ Aj cos (cpj + 0>(x,a.)) + w2(x) (1) 

j-l 

where A . and cp . are the magnitude and phase of the radiation from the j 

target, a. is its angular position, x is the location of the sample point 
J 

within the aperture, and $ is a function of x and CC.  which measures the phase 
J 

difference between sample points due to the geometry.  (See Fig. 1.) If X 

Z2 

is the wavelength of incident plane wave, then 

*(x,a ) = ^ cos a 

wn(x) and wp(x) are Gaussian random variables of zero mean representing the 

noise. Since w (x) and wp(x) are orthogonal components of the rf noise, they 

are independent. In addition 

I   [o      x^y 
E [w.(x)wi(y)] =)     2 1-1,2 

L CT      x = y 

The amplitudes, A., the phases cp., and the angles a. are considered to be 

unknown parameters; i.e., no a priori distribution for them is assumed known. 

Thus, there are 3Q unknown parameters and the problem is of the basic form 

Z-L(X) = f^x^,...^^) + wx(x) 

z2(x) = fg(x,e1,...,€3Q) + w2(x) (2) 
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Fig.   1.    Target Geometry. 



where the €'s represent the unknown parameters, and the f.'s are known 
J 

functions of x and the e's. We will define e.(j = 1>«««>3Q) as the estimate 
J 

of the e . obtained from the observations z,(x) , zp(x) , 0 < x <  X. 

We consider the case where the z.(x) are observed at N points of the 

aperture, equally spaced at intervals 6 = X/N. 

Consider 

p(z(l),...,z(N) | e1,...e3Q) 

where ji(k) is a two-dimensional vector representing the k  sample, and p is 

the probability of the observed sample conditional on the true values of the 

unknown parameters. If one desires to obtain unbiased estimates of a set of 

unknown quantities e ., based on observing a set of random variables z(k), one 
J 

can place a lower bound on the variances of the estimators €. by means of the 
J 

Cramer-Rao or Information Inequality. Two of many derivations of this 

fundamental result are found in Ref. 2, Chap. 32 and Ref. 3, Chap. 12 (the 

terms Carmer-Rao or Information Inequality are not employed; see instead the 

discussions on efficiency). In the case of multiple parameter estimation, 

this inequality can best be stated in matrix notation. Let 

I. . = -E 
a2 

J 

be elements of a matrix [i], and let 

3^-^— log p (z(l),...z(N)) | e1,...€3Q 

2 

be the elements of a matrix \ a     . Then the Cramer-Rao Inequality states that 

'•-j - [E <-% - «i> <*, - «.>1 

2 
a ]-H 

is positive definite, which implies that 

4 ^ [A -1 
**       L J kk (3) 
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This result is derived from the requirement that the estimates be unbiased and 

a generalized Schwartz inequality and is subject to the condition (usually- 

present in practice) that [i] be positive definite. Thus the desired lower 

bound can be obtained by calculating the necessary derivatives and inverting 

the resulting matrix. 

In the sequel it will be useful to employ the following alternate inter- 

pretation of [I]" . Consider Eq. (2). Expand the f.(x,€,,...,e_Q) in a Taylor 

series about some set of 6's, €,,...,£_„. Then 

f  Of (X,€,...,€- ) 
-i ^L A€j + w^x) + «± ,1-1,2 (k) 

J-l        J 

where the partial derivative is evaluated at the e 's, $. is the remainder.. 

and 

Azi(x) = z^x) - t±(x,e^,.,.,e°) 

. o 
Ae . = e . - e . 

j   J   j 

If the c .'s are close enough to the true values to allow the remainder, ($ , 

to be neglected. Eq. (U) can be considered as a linear regression problem with 

unknown coefficients, Ae .. A minimum variance, unbiased estimate (or a maximum 

likelihood estimate) for this problem has a covariance matrix equal to [I] 

[References 2 and 3 give the linear regression equations which, when applied 

to Eq. (!<•), give [I]  for the Gaussian case.] Therefore, [I]  can be con- 

sidered as either a bounding covariance matrix or the result of a linearized 

or small error, error analysis. Thus, for signal-to-noise ratios which are 

large enough to imply small errors, the inequality of Eq. (3) becomes equality. 



3.    Single Target 

The first case to be considered is a single target at unknown angle a with 

unknown amplitude A and phase <!>.    The target is known to exist.    When the noise 

is gaussian, with variance CT    and zero mean, the observation of N samples equally 
X 

spaced at 6 • —   along the aperture leads to a conditional probability for the 

samples of 

p(z(6),z(28),...   |a,A,0) 

N 

(
2TT

) O I   ±ml 

2TTiB 
z (iB) -A sin(0 + —±2- cos a) 

-L A 

N 

V   z2(i6) -A cos(o + 2TTiB 
cos 

i-i /    y 

from Eq. (l). 

After taking the proper derivatives and averages we obtain, for N large, 

m = 

N   A2/2nxf        2 

CT 

sin a 
N   A   /2rtc\    ,    _ 
2    S{—jSina 

N 
"2" 
c 

N   A 
2    T (¥ sin a m 

in which the indices 1, 2 and 3 correspond to a, A and $ respectively. From 

this we calculate 
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[II 

12 

4 (¥) 2 
sin a 

NA.   fgrgj^) sin a 

N 

NA    /2T1X\ 

NA 

Consequently, the variance in the angle measurement is lower bounded by 

V 
 12 
—R P 

NA   /2T«Y    4  2~ 
"~?VT7 sina 

(5) 

The fractional beamwidth error is therefore bounded by 

'»Wi 
where R = —p- is the signal-to-noise ratio of the same aperture  if all array 

element outputs are added and BW = \/X. is the beamwidth for the aperture 

f2\2 
measured to the 1 — !   relative power level.    We see that this is comparable to 

\TT. 

that obtained by monopulse lobe comparison techniques in Ref. 1. 

k.    Two Targets 

The same procedure can be followed in the two-target case when exactly 

two targets are known to exist.    The conditional probability expression is 



P(z(6),z(26),... |a1,a2,A1^2,»1,»2). 

(^)" ? exp A zAib) -A,  sin(0. + =^16) cos a.) 
r 1       v 1       X 1 

-A2 sin(<J>2 + =2(i6) cos a2) 

N 

"I 
2CT i-1 

z2( 16) 

-k1 cos($1 + ^(io) cos o^) -A2 sin($2 + ~(i&) cos o^jl 

Taking derivatives and computing averages the result is 

i « [D] [rj [D] (6) 

where [r] is a 6 x 6 matrix given in Fig. 2 and [D] is the 6x6 diagonal 

matrix, 

*V2 

?^L  A. sin a, 
X        1 1 

?f   A2 sin a2 



[n = 

a21 

0 

aUl 

1/2 

a6l 

"21 

1/3 

-%! 

0 

a6l 

1/2 

in 

-%1 

1 

aUl 

o 

^63 

1/2 

l6l 

lU3 

a 
63 

l63 

l*3 

a6l 

1/2 

^63 

o 

%3 

a. 21 (aX) 
5- cos(aX + b) + r-^y   sin(aX + b) ^   sin(aX + b) +      2 « sin b 

(aX)" 

ai,i B rZTT cos(aX + b) *- sin(aX + b) +  1 * sin b 
U1  W (aX)2 (aX)2 

aAi 3 7T5T sin(aX + b) +  5- cos(aX + b) =• cos b 
61 {aX) (aX)2 (aX)2 

aU3 * f5xT sin(aX + b) "(ixTsinb 

a63 = r^xTcos(aX + b) TixTcosb 

2n . . 
a = — (cos a   — cos OL) 

(aX)" 

b - cp1 - cp2 

Figure 2 

[n        Indices 1, 2,  3, ^> 5, and 6 

correspond to parameters a , ap, A.., 

Ag, <px, and q>2> 

•28-4805 
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This factorization of the fll matrix is attractive since it places in 

evidence the dependence of the elements of [I]" on the various parameters. 

(Recall the inverse of a diagonal matrix is a diagonal matrix with the elements 

inverted and also [Il~ = [D]~ [r]~ [D]~ .) Thus we may note that the 

element of [I]  corresponding to the variance of amplitude is independent of 

the amplitude. This fact will be important in the detection discussion of 

Section 5« 

Computing the inverse of the [I] matrix is difficult, "but when we are only 

concerned with the angular accuracy, only part of the inverted matrix is re- 

quired. This can be obtained with a somewhat less tedious calculation by 

partitioning the [r] matrix. Although it is then possible to obtain the 

variance of the angular measurement in closed form, the expression is too 

lengthy to be very useful. Therefore, the angular variance is plotted as a 

function of the target separation in Fig. 3 with the phase difference b = 0^ — <t»_ 

as a parameter. From this normalized curve results for various values of a 

signal-to-noise ratio and angular position can be obtained. 

In addition, the ratio of the variance in the two-target case to the var- 

iance in the one-target case is also plotted. One can observe that the results 

are essentially identical for target separations greater than one beamwidth 

(BW = —), but that for smaller separations the measurement error in the two- 

target case becomes large very rapidly as the separation decreases. The phase 

difference b causes a wide variation in the form of the curves. However, for 

all values of this parameter, the variance is radically larger if the separation 

is less than about one beamwidth. Consequently, any attempt at beam splitting 

for separations much smaller than one beamwidth will prove futile. 

5. Detection 

The preceding two sections have considered estimating accuracy for multiple 

targets under the assumption that the exact number of targets present is known. 
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Detection is the problem of deciding the number of objects present. Certain 

general aspects of multiple target detection are briefly reviewed, and a 

measure provided on the relative detection capability in the one- and two- 

target case. 

A standard approach to the detection problem employs the theory of 

hypothesis testing.* In the case where at most one target may exist, it is 

hypothesized that no target exists (IL. is the hypothesis). The alternate 

hypothesis is that a target does exist (H. is the alternate hypothesis). If 

A is the amplitude of the signal, these hypotheses are equivalent to 

V     A = ° 
H,:   A^O 

If up to two targets are possible, it is then necessary to check the possi- 

bilities of zero, one and two targets. Such a multi-level decision can be 

built out of two-level tests such as used for the one-target problem. For 

example, a first test might hypothesize that no targets are present vs the 

alternate hypothesis that at least one target is present. That is 

HQ:   Ax = 0 , A2 = 0 

H,:   At least one A / 0   j = 1,2      (7) 

where the A. are the amplitudes of the signals. If the hypothesis that no 

targets are present is rejected, one could then hypothesize the existence of 

exactly one target vs the alternate that exactly two targets exist. That is 

HQ:   AX ±  0 , A2 = 0 

(8) 
E±: A± +  0 , A2 I 0 

*The following discussion is a very special application of the general 
statistical theory. References 2 and 3 are two of many which contain far 
more extensive discussions. 
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There are, of course, many other possible sequences, and the above is only an 

example. 

The basic problem is thus the testing of some hypothesis IL. vs some 

alternate H,. The test is based on some test statistics, |,  where | is 

some function of the observed data. There are many possible test statistics, 

two of which have particularly nice properties. The first of these is based 

directly on the estimated amplitudes (A.) of the signals. For example, in 
J 

the one-target case, the hypothesis that no target exists (H-) is rejected 

if the magnitude of the estimated amplitude exceeds some chosen value. In 

the multiple-target case, similar tests are employed on the vector of the 

estimated amplitudes. The second test statistic is the likelihood ratio; 

i.e., the ratio of the maximum likelihood attainable under H, to the maximum 

likelihood attainable under H-.  (See, for example, Ref. 3>) The amplitude 

statistic is more powerful, but the likelihood ratio test is independent of 

the signal-to-noise ratio. We shall confine discussions to the amplitude 

statistic. 

To be explicit, assume the signal-to-noise ratio is high enough so that 

the variance given by the Cramer-Rao Inequality can actually be realized or, 

equivalently, that we are dealing with thesystem of linear equations given by 

Eq. (!<•).* The vector estimate [A, ,A?] is then a two-dimensional Gaussian 

random variable with covariance matrix given by the corresponding elements 

of the matrices of [i]" . Let [l]7. denote this 2x2 sub-matrix of [l]~ . 

If it is desired to test the hypothesis of Eq. (7), the test statistic | is, 

in matrix notation, 

e- 
            _ 

A 
Al r -1 

A     A 
A     A- I 

|_   1     2J AA 
A 
A„ 2 

1              — 

*This approach is similar to the investigation of the asymptotic behavior of 
test statistics as employed in the statistical literature. 
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2 
The equation, | = constant, defines an ellipse of constant probability in 

A  A 2    2 
A. , A? space. Thus the hypothesis test, which rejects K- when i > £n , means 

A    A  i 
the hypothesis is rejected when IA., , Allies outside the constant probability 

2 /\ 
ellipse specified by £0 . Let cfes denote the variance of A_ as evaluated, 

using the corresponding diagonal term of [l].A« For the case of Eq. (8), the 

test statistic is 
,/V   2 

2 

" V «fr / 
which is the one-dimensional version of the preceding case. 

The question of prime interest in this paper is how well detection can be 

performed. Unfortunately, a complete analysis requires the choice of explicit 

sequences of tests, and this choice depends on the particular problem of 

interest. In addition, the calculation of the resulting probabilities of 

the various types of error is somewhat laborious. Thus we shall merely 

indicate the relative degradation in detection capability which results from 

the presence of a second target. Consider the case of Eq. (8), where the 

existence of one target is definitely known (A, / 0), and the possible exis- 

o     A     p 
tence of a second is to be tested. The test statistic, £ , is (Ap/o£ ) . Thus 

A2 

A2 

where y\  is a Gaussian, zero-mean random variable of unity variance. Now, con- 

sider the problem of deciding whether there are one or no targets. Exactly the 

same test is used, except that oA is replaced by the a* obtained from the 

corresponding element of [i]  as evaluated in Sec. 3, Eq. (5). Thus, for a 

fixed false detection probability, the probability of detecting a second target 

of amplitude Ap in the presence of another known to be present, equals the 

probability of detecting a single target of amplitude A when 
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\   a£ 

The ratio, qft /a/s, therefore measures the degradation of detection performance 

caused by the presence of a second target. 

As with the case of the angular accuracies of Sec. k,  the closed form 

2  2 
solutions are too complex to be very useful. Thus q^ /W is plotted in Fig. h 

as a function of target separation with the phase difference b as a parameter. 

6. Discussion 

Figures 3 and k  constitute the major results of this study and show that, 

as target separations increase beyond one beamwidth, the information loss 

caused by multiple targets rapidly disappears. Since these curves resulted 

from a limited analysis on a simplified model, we must discuss their limita- 

tions before drawing actual conclusions. 

We considered only errors due to additive noise. Thus the antenna pattern 

is assumed to be known exactly. This assumption results in the angular accuracy 

of one target being independent of the cross sections (amplitude) of other 

targets. With an exactly known antenna pattern, this is not unreasonable, since 

the effect of other targets can be "subtracted out." In practice, however, 

uncertainties in antenna pattern can cause a large cross section target to 

sizeably degrade estimates from a nearby smaller target. In addition, an 

Inequality was used in place of an exact error analysis. We can hope to 

approach the resulting bound only with a sufficiently high signal-to-noise 

ratio. Thus Figs. 3 and h  indicate actual capabilities only for S/N ratios 

high enough to approach the bound but low enough to keep antenna uncertainties 

from predominating. The range of such S/N ratios depends on the particular 

problem under investigation. However, it is not unreasonable to expect some 

-15- 



r— 
O 
co 
*T 

oo 
evj 

ro 

,*• CM ^r 
1** t^ »!> r» ro lO t= 

« „ CVJ 

ro 

CVJ <fr fc 
r= Is o" .^_ 

ii II II n 

-Q 

\ \ \ 

•°                                 / 

— 

\ \ 1  
\ 

1                  1                  1 1 1 1            1           1 

ro 

co 

o 
o 

(\J 

10 
o 
o 

M 

oo 

^ 

<0 *• cvi 

(4a6jD| auo)  v   UVA 

03 
+-• 
<u 
bJD 

03 

H 
o 

H 

o 
V 
CJ 
c 
(1) 
CO 
CD 

c 
o 

cti 
T3 

CO 
U 
bjo 
<D 

Q 
c 
o 

•H 
•M 
o 
cu 

+J o 

txo 

$0 (SJ86JD; OMI)   V^ UVA 

16- 



systems for which it is nonempty. For example, the same basic assumptions 

hold in both the one-target and two-target cases and the single target bound 

is often approached in practice. 

We applied the basic theory to a very simple model: a one-dimensional 

aperture with two stationary targets and white noise. The two-dimensional 

aperture and more than two targets merely introduces more parameters into 

the problem. This is also true for moving targets as the unknown phase $ 
J 

of the return signal from the j  target becomes a parameterized function of 

time such as 

to account for range and range rate and the angular position, a , becomes a 
J 

similar parameterized function of time to account for the angular motion. 

A moving target also requires specification of the carrier modulation. The 

introduction of these parameters into the model is straightforward and would 

not change the basic method of analysis. However, it would greatly enhance 

the computational difficulties associated with explicit results. The simple 

model is valuable as it indicates the target separations for which the angular 

resolution problem can be ignored and either single target analysis used or 

range and range rate multiple target resolution studied by itself. Such a 

dichotomy provides a simplified but very useful picture of the over-all multiple 

target problem. The incorporation of n  order Markovian observation noise 

changes the equation for information to a nonlinear differential equation, which 

can be numerically integrated on a digital computer. However, our basic problem 

is not well enough defined to justify a nonwhite noise model. 

The most important limitation in the scope of the study is the fact that 

we have not considered an actual data processing system. If conditions are 

such that the bound can be approached, the classical maximum likelihood 
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estimation technique provides the desired estimates. If we are not worried 

about computation time and cost, such estimates can be obtained using a large 

digital computer. However, for most situations, such a procedure is grossly 

impractical, as real time estimates are required and these imply primarily 

analog data processing. Unfortunately, a straightforward analog implementation 

of the maximum likelihood technique for several targets requires a large 

amoung of hardware, and the various avenues which might lead to a practical 

analog implementation have not yet been explored. Information is of no value 

if it cannot be extracted. 

Let us now summarize what Figs. 3 and k actually imply. They provide a 

bound on possible system performance. More important, there is good reason to 

believe that some systems do or will exist for which this performance can be 

approached. Thus, for more than a beamwidth separation, multiple-target 

capability close to that of single target monopulse lobe compression is a 

distinct possibility, provided a practical data processing procedure can be 

developed and implemented. A prime purpose of this report is to motivate 

investigations on such data processing techniques. 
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